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Introduction 
    
CoNAn-SNV is a probabilistic framework for the discovery of single nucleotide variants in WGSS 
data.  This software explicitly integrates information about copy number state of different genomic 
segments into the inference of single nucleotide variants. A full description of the model and its 
performance evaluation is available in the following manuscript: 
 
Mutation discovery in regions of segmental cancer genome amplifications with CoNAn-SNV: a mixture model for 
next generation sequencing of tumors.  
Anamaria Crisan1, Rodrigo Goya1,2, Gavin Ha1, Leah M Prentice1, Arusha Oloumi1, Janine Senz3, 
Thomas Zeng2, Kane Tse2, Allen Delaney2, Marco A Marra2, David G Huntsman3, Martin Hirst2, 
Sam Aparicio1,*, Sohrab P Shah1,3,*  
 
CoNAn-SNV can operate independently of CNA segmentation algorithm presented in the 
manuscript so long as it receives input in the format described in Getting Started section. We do 
however provide our segmentation algorithm on our website and it’s documentation is present in the 
appendix of this manual. Should you choose to use an independent method, please carefully consult 
the Segmentation Algorithm Notes section to understand how this may affect the output. Finally, 
CoNAn-SNV is designed and tested on WGSS data and we do not recommend its use for WTSS 
data (RNA-seq).   
 
 
Contact Information 
To report any bugs, suggest improvements or for additional support please contact: 
 
Sohrab P Shah, PhD 
MSFHR Research Fellow 
Centre for Translational and Applied Genomics 
Molecular Oncology Breast Cancer Research Program 
BC Cancer Agency, Vancouver BC Canada 
+1 604 877 6000 x2589 
sshah@bccrc.ca
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Getting Started 
 
CoNAn-SNV takes as input a pileup file either in a BAM or MAQ format and a file specifying CNA 
segments. In the CoNAn-SNV manuscript, Supplemental Table 2 provides an example of the 
segment input file. It outputs the positions, reference base, non-reference base and a probability for 
each of the genotypes existing in that CNA segments. 
 
 
 
Pileup File Specification 
 
When generating a pileup file it is necessary to specify the –s option in order to ensure that mapping 
and base qualities are included. The manuscript uses a framework similar to SNVMix1 in order to 
allow for a conceptual comparison of the different algorithms. The implemented version, however, is 
subsisted on the SNVMix2 underlying framework and will use mapping and base qualities to weight 
allelic counts.  Additionally, we do not recommend using the –c option for the pileup creation 
because it creates additional columns that the CoNAn-SNV model does not handle. 
 
Segmentation Algorithm Input Format 
 
The input format for the segmentation algorithm requires a chromosome, start and end co-ordinates 
and finally a numeric encoding of the copy number state. For example: 
 

Chromosome Start Positions End Positions CNA State 
1 114861349 247188490 5 
5 170568420 180647645 4 

 
The numeric encoding by our segmentation algorithm is as follows: 2 (NEUT/LOSS); 3(GAIN); 
4(AMP); and 5 (HLAMP). This can vary depending on the segmentation algorithm used (see 
Segmentation Algorithm Notes). 
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CoNAn-SNV Parameters 
The following explains the parameters for the CoNAn-SNV, which can also be accessed by using the 
–h parameter in the CoNAn-SNV in the command line. 
 

Parameter Explanation 
-m Model file that has the π and µ parameters for each CAN state (specified after parameter, i.e. mu 

2 is parameter for NEUT/LOSS) 
        mu 2 0.xxxxxxxx 0.xxxxxxxx 0.xxxxxxxx 
        mu 3 0.xxxxxxxx 0.xxxxxxxx 0.xxxxxxxx 0.xxxxxxxx 
        pi 2  0.xxxxxxxx 0.xxxxxxxx 0.xxxxxxxx 
        pi 3  0.xxxxxxxx 0.xxxxxxxx 0.xxxxxxxx 0.xxxxxxxx 
 
For classification: -m parameter provides model parameters 
For training: -m parameter serves as output, storing the learned parameters 
 

-i Input file (i.e. the pileup file – see previous page for correct specifications). Does not have to be 
defined; pileup input can also be piped i.e. <STDIN>. 

-c Copy Number Segment File. See above for file specifications. Required in Training and 
Classification. 

-S Specifying the total number of copy number states. For example, the numerical encoding for a 
HLAMP in our model is 5 (we still consider LOSS 1 but analyze it as NEUT – or 2) so we would 
enter –S 5 for our segmentation algorithm 

-o Classification output file. If not specified, output will print to <STDOUT> 
-T | -C T (Training) and C (Classification). If not provided, the default is -C 

-p 
 

Input pileup format. Can take on 2 values 
     m : MAQ pileup 
      s  : SAMTOOLS pileup 

-t  Full described in SNVMix2 manuscript. For the CoNAn-SNV model implemented in manuscript, 
we use –t SNVMix1. In practice, we typically use –t MB. The options are listed below: 
 
mb        Lowest between map and base quality 
m        Filter on map, and use as surrogate for base quality 
b        Filter on base quality, take map quality as 1 
M        Filter on map quality but use only base quality 
Mb        Filter on map quality and use both map and base qualities 
MB        Filter on map quality AND base quality 
SNVMix1    Do not consider contribution of m or b to allelic counts 
conan          Analyse data with CoNAn-SNV mode  

-q Minimum required base quality (otherwise filtered out) 
-Q Minimum required mapping quality (otherwise filtered out) 
-M Training only. List of hyper parameters required for Training the model.  An example is provided 

on the website. 
-f By default CoNAn-SNV will output only positions that contain at least one instance of the 

variant allele, even if that position does not have a SNV. Indicating –f will output all positions in a 
pileup. 
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Running CoNAn-SNV 
  
It is possible to use CoNAn-SNV for classification as well as algorithm training. Suggested methods 
for Training the algorithm are available in the SNVMix and CoNAn-SNV papers as well as alternate 
strategies in various machine learning texts. In brief, training allows the probabilistic framework to 
better model the dynamic ranges of an individual tumor’s landscape. There are a number of training 
strategies for such models as are frequently described in machine learning mathematical texts. 
 
CoNAn-SNV is distributed as part of the SNVMixsuite package. This package is capable of running 
not only CoNAn-SNV but also SNVMix1 and SNVMix2.  
 
⇒Training the model 
 
./SNVMixsuite  –S 5 –c segment_file.dat –i training_pos_samtools.pileup –m output_modelfile.dat  –t CoNAn    
–q 20 –Q 10 –p s –M hyperparameters.dat   -T   
 
⇒Classifying with the model  
 
./SNVmixsuite –S 5 –c segment_file.dat –i samtools.pileup –o conan_snv_output.dat –t CoNAn   –q 20 –Q 
10 –p s -C    
 
In most instances, specifying –f is not necessary because positions containing no variant at all is 
generally not interesting. However, if you wish to assess performance then –f must be selected in 
order to ensure proper true positive and true negative sets.  Others, true negatives with 0 variant 
alleles will be excluded 
 
 
Post-processing considerations 
 
The default final output from CoNAn-SNV is NOT an exhaustive list of SNVs, but a list of all co-
ordinates containing more than one variant . A post-processing script may be desired to extract the 
desired variants. An example of such a script is available on the website. Here is an example of how 
it works. 
 
chr:pos   ref    nref                  paa               pab                 pbb         call 
1:3204    C A C:20,A:1,0.9999955211,0.0000044789,0.0000000000,1 
 
The above is a line of output from CoNAn-SNV. By summing the values of the variant containing 
states (pab + pbb) we have a p(SNV). If p(SNV) > threshold, then we include the SNV in our 
analysis, otherwise we exclude it. The threshold can  be set by any means. In our studies we set it 
such that the false positive rate on the training data was less than 1%.
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Segmentation Algorithm Notes  
 
It is possible to use different segmentation algorithms to provide CNA state information rather 
then relying on the method presented in the paper. As previously mentioned this will work so 
long as the input format is: chromosome, start and end position, and a numerical encoding of the 
CNA state. The numerical encoding of the CNA state can have a significant impact on the output 
data, and so it is important to understand several limitations prior to moving foreward with a 
different algorithm 
 
 
1. Why not just use raw copy number? Why summarize segments with “annotations”? 
 

    Algorithms such as CoNAn-SNV are subject to challenges existing in model selection 
problems (which can be found described in greater detail in various machine learning texts). 
Using all possible raw copy numbers complicates the model selection problem because it 
introduces too many models and ultimately makes the algorithm uninformative. Consider our 
current schema: there is a genotype state space that represents high-level amplifications and a 
separate one for other CNA states. Using the same schema, but substituting the annotated copy 
number with the raw copy number, would create a genotype state-space for raw copy number, 
say, 15 and another separate one for raw copy number 16.  The natural inclination is that there is 
no meaningful distinction between these raw copy numbers to require imposing a separate 
genotype state-space for each.  Although, the true raw copy in the genome may be consistent, the 
data after sequencing and processing may not be. Further more raw copy number is variable from 
position to position, thus the dynamic range across the entire genome would be very large and 
difficult to accommodate.  
       Within a segment of, say, high-level amplification, positions will have variable depth due to 
issues with sequencing and alignment. An appropriate algorithm should accurately define segment 
boundaries, however it too can have problems of over-segmentation or conversely poor 
resolution.   
 
2. How do I know I’ve selected a good CNA segmentation tool? 
Consider the frequency of events that are occurring. In the lobular carcinoma presented in Shah 
et al. (2009): 30.2% of the genome was predicted as loss/neutral, 44.5% was gain, 19.1% 
amplification and 4.2% high-level amplification.  In this genome, gains were so prevalent because 
it is triploid, but events like amplification and high-level amplification are still shown to be rare. If 
there were to be another level of amplification, for example “ultra high level amplification” it 
would likely encompass an even smaller proportion of the genome. The problem then becomes 
the model selection problem stated in the previous point.  It is likely possible to have 6 or even 7 
states in total; however beyond it is possible that the data may be over segmented and caution is 
advised.  
 
3. Is it possible to use other technologies to inform copy number state? 
It may be possible to use an orthogonal analysis tool, such as an array, to identify segmentation 
boundaries for CNA states for WGSS data. We note in our manuscript that oncoSNP identifies 
and classifies CNA segments similarly to our own NGS tool. We are doing experiments with this, 
but it is still in phases of preliminary investigation. It is important to identify that array platforms 
have their own biases and difficulties that must be overcome by their segmentation algorithms.   


